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• We have two powheg ttbar samples, which we think are the same except for tau decay: one 
uses pythia, the other uses tauola. Pythia ignores the tau polarisation when simulating the 
decay, while tauola treats it correctly.

•  

• The difference between the measured asymmetries when using powheg-pythia and powheg-
tauola for the unfolding should give the systematic associated with the mismodeling of the 
tau decays in powheg-pythia (next slide)

TTTo2L2Nu2B_7TeV-powheg-pythia6
TT_TuneZ2_7TeV-powheg-tauola
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• Biggest shift seen in top polarisation

• P+ and P- are two independent measures of the top polarisation, using positive and negative leptons

• consistent shifts:  systematic = ~0.013

powheg-pythia 
results (same as 
in PAS)

powheg-tauola 
results difference

-0.097 -0.094 0.0037

-0.035 -0.024 0.0105

0.019 0.034 0.0148

-0.015 -0.008 0.0070

0.010 0.010 0.0002

-0.011 -0.017 -0.0063
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TABLE VII: The azimuthal angle asymmetry A�

∆φ at a
7 TeV LHC, and in parenthesis the 1σ statistical

uncertainties, (i.e. 1/
√
N) assuming 5 fb−1 of data

GA(%) GL(%) GR(%) W �(%) SM(%)
Selection cuts -26 -26 -28 -43 -24 (±1.2)
mtt̄ > 450 GeV -47 -47 -50 -62 -45 (±1.7)
|y(t) + y(t̄)| > 2 -45 -44 -49 -56 -45 (±3.2)

with order a few inverse femtobarn of data, and much
sooner in the case of the W �. Moreover, the GR model
becomes distinguishable from the others. Thus the dilep-
tonic charge asymmetry can establish the existence of a
BSM asymmetry in tt̄ events in typical axigluon or t-
channel vector boson models in the expected 7 TeV run.

To further strengthen the case for new physics and
distinguish between competing explanations of an asym-
metry, we consider several other leptonic variables. The
combination of these variables provides a diagnostic suite
of measurements which, taken together, can distinguish
between different models for the top AFB.

One useful variable is the asymmetry in the azimuthal
angle between the two leptons, ∆φ, which is π when the
two leptons are back to back and zero when they are
aligned in the transverse plane. In Eq. (9) we construct
an asymmetry with this variable

A��
∆φ =

N(cos∆φ�� > 0)−N(cos∆φ�� < 0)

N(cos∆φ�� > 0) +N(cos∆φ�� < 0)
. (9)

measuring how often the two leptons are on opposite sides
of the transverse plane (contributing to A��

∆φ < 0) vs.

how often they are on the same side (A��
∆φ > 0). Unlike

the leptonic asymmetry constructed in Eq. (8), there is
a kinematic reason for A��

∆φ to be biased to negative val-
ues. However, as one can see in Table VII, the difference
between the various A��

∆φ provides a useful discriminant.
In particular, it helps in distinguishing the signal of the
W � and GR models from the Standard Model.

C. Top Polarization

As one might expect, fully reconstructed observables
are even more powerful than those which use only the
leptons. Next we explore top polarization measurements,
which again require reconstruction of the top rest frame.
For simplicity we consider two choices of polarization
axis: (1) the beam axis, which we now define relative
to the boost of the tt̄ system,

n̂beam =

�
+ẑ if yt + yt̄ > 0

−ẑ if yt + yt̄ < 0
(10)

and (2) the helicity axis, again defined as the top di-
rection of motion in the tt̄ center of mass frame. The
asymmetry in cos θ� which measures the net polarization

TABLE VIII: Net polarization Pb in the beam basis at
a 7 TeV LHC, and in parenthesis the 1σ statistical
uncertainties, (i.e. 1/

√
N) assuming 5 fb−1 of data

GA(%) GL(%) GR(%) W �(%) SM(%)
Selection cuts 4 -1 5 9 2 (±1.2)
mtt̄ > 450 GeV 1 -4 4 11 0 (±1.7)
|y(t) + y(t̄)| > 2 2 -5 7 15 1 (±3.2)

TABLE IX: Net polarization Ph in the helicity basis at
a 7 TeV LHC, and in parenthesis the 1σ statistical
uncertainties, (i.e. 1/

√
N) assuming 5 fb−1 of data

GA(%) GL(%) GR(%) W �(%) SM(%)
Selection cuts 1 -1 4 18 1 (±1.2)
mtt̄ > 450 GeV 2 -2 6 26 0 (±1.7)
|y(t) + y(t̄)| > 2 0 -4 3 19 -2 (±3.2)

does not need to be redefined for the LHC, so we have
once again

Pn =
N(cos θ�,n > 0)−N(cos θ�,n < 0))

N(cos θ�,n > 0) +N(cos θ�,n < 0))
. (11)

Results are tabulated for the beam axis in Table VIII and
for the helicity axis in Table IX.

Polarization measurements are particularly useful for
distinguishing among the various axigluon models, which
differ from each other chiefly in the chiralities of their
couplings to top quarks. Polarization measurements also
are important for distinguishing the GL model from the
SM. The bias towards right-handed polarizations is an
effect of selection cuts preferentially passing the harder
leptons which arise from right-handed tops.

D. Top Spin Correlation

Finally, we present results on tt̄ spin correlations

A�
c1c2 =

N(c1c2 > 0)−N(c1c2 < 0))

N(c1c2 > 0) +N(c1c2 < 0))
(12)

where c1 = cos θ�1,n and c2 = cos θ�2,n. As with the pre-
vious section, we present results using two polarization
axes: the beam axis in Table X and the helicity axis in
Table XI.

As one can see from the tables, A�
c1c2 is not as sensi-

tive to new physics effects as the observables explored in
the previous subsections and thus will require more lumi-
nosity before yielding meaningful information. Nonethe-
less, as this observable probes independent information it
should still be measured as it can help to further narrow
down the set of explanatory models.
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1 Measurement of asymmetries1

A recent paper by Krohn, Liu, Shelton, and Wang [1] suggests two further observables that can
be studied. The first of these is the lepton charge asymmetry, which depends only on the two
measured leptons:

AlepC =
N(|ηl+ | > |ηl− |)− N(|ηl+ | < |ηl− |)
N(|ηl+ | > |ηl− |) + N(|ηl+ | < |ηl− |)

,

where |ηl | is the pseudorapidity of leptons. The second is the top forward-backward asymme-
try, defined as

AtopFB =
N(cos(θt) > 0)− N(cos(θt) < 0)
N(cos(θt) > 0) + N(cos(θt) < 0)

,

where θt is the production angle of the top quark in the tt rest frame with respect to the direction2

of the boost of the tt system.3

To further reduce the background fraction, the requirement is added that at least one of the4

selected jets must be consistent with coming from the decay of heavy flavor hadrons and be5

identified as a b jet by the CSVM b-tagging algorithm [2]. Some additional very minor selection6

changes are detailed in [3]. With such event selections, the simulation predicts that the selection7

is dominated by dileptonic tt events (92%), with the largest background coming from single top8

production [3].9

The AtopFB measurement requires the reconstruction of the tt system. The method described in10

Section ?? is again used, with minor differences detailed in [3]. Approximately 17% of events11

have no solution, and are not used in the measurement of AtopFB. The reconstructed asymme-12

tries are listed in Table 1, where they are also compared to the simulation.13

Table 1: Reconstructed and simulated asymmetries in the preselection region. Uncertainties
are statistical only.

Reconstructed asymmetries Data Simulation
AlepC 0.006 ± 0.010 0.002 ± 0.002
AtopFB 0.000 ± 0.011 0.005 ± 0.002

The reconstructed asymmetries are distorted from the true underlying distributions by the lim-14

ited acceptance of our detector and by bin-to-bin smearing due to the finite resolution of the15

measurement. We have developed a procedure that allows us to correct the binned data for16

both effects, yielding “parton-level” distributions and asymmetries. The unfolded results are17

normalized to the theoretical tt cross-section of 154.0 pb, so that the corrected distributions rep-18

resent the differential cross-section in the variable of interest. The details of the procedure are19

described in [3].20

Background-subtracted and unfolded asymmetry distributions are shown in Figure 1. The21

measured asymmetry values are summarized in Table 2 and compared to the SM tt parton level22

predictions obtained from POWHEG Monte Carlo [3]. No significant discrepancy is observed23

compared to the SM prediction. The systematic uncertainties are summarized in Table 3.24

1.1 Mtt dependence25

The dependence of AtopFB on the mass of the tt system, Mtt, is interesting because new physics26

is expected to be more prominent in the high Mtt region. The results are obtained by adding27
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once again
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Results are tabulated for the beam axis in Table VIII and
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Polarization measurements are particularly useful for
distinguishing among the various axigluon models, which
differ from each other chiefly in the chiralities of their
couplings to top quarks. Polarization measurements also
are important for distinguishing the GL model from the
SM. The bias towards right-handed polarizations is an
effect of selection cuts preferentially passing the harder
leptons which arise from right-handed tops.

D. Top Spin Correlation

Finally, we present results on tt̄ spin correlations

A�
c1c2 =

N(c1c2 > 0)−N(c1c2 < 0))

N(c1c2 > 0) +N(c1c2 < 0))
(12)

where c1 = cos θ�1,n and c2 = cos θ�2,n. As with the pre-
vious section, we present results using two polarization
axes: the beam axis in Table X and the helicity axis in
Table XI.

As one can see from the tables, A�
c1c2 is not as sensi-

tive to new physics effects as the observables explored in
the previous subsections and thus will require more lumi-
nosity before yielding meaningful information. Nonethe-
less, as this observable probes independent information it
should still be measured as it can help to further narrow
down the set of explanatory models.
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Results (powheg-tauola vs powheg-pythia)
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default powheg pythia
reweighted powheg pythia
powheg tauola

=7 TeVs at  -1CMS Preliminary, 5.0 fb

   Asym: 0.1691
   Asym: -0.0015
   Asym: 0.1678

)!-l"cos(
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default powheg pythia
reweighted powheg pythia
powheg tauola

=7 TeVs at  -1CMS Preliminary, 5.0 fb

   Asym: 0.1703
   Asym: -0.0001
   Asym: 0.1698

• Powheg pythia distribution looks like powheg-tauola distribution after reweighting

powheg-pythia reweighting
• Try reweighting angular distribution of tau decays in powheg-pythia to reproduce the effect

• Distribution is given by

• Weight events by  1 + (P Cosθ (2 x - 1))/(3 - 2 x) where x = (lepton momentum)/(max possible lepton momentum) 
and θ = (angle of daughter lepton in tau rest frame)

• also reweight x distribution to match that of powheg-tauola (this effect is small)

l l'

!l'
(a)

!l
(b) !l'!l

l'l

W
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• Now evaluate systematic by unfolding using the reweighted powheg-pythia MC, and comparing to the default

powheg-pythia 
results (same as 
in PAS)

r e w e i g h t e d 
powheg-pythia 
results

difference

-0.097 -0.097 0.0004

-0.035 -0.033 0.0019

0.019 0.021 0.0023

-0.015 -0.015 -0.0007

0.010 0.010 -0.0000

-0.011 -0.011 0.0000
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TABLE VII: The azimuthal angle asymmetry A�

∆φ at a
7 TeV LHC, and in parenthesis the 1σ statistical

uncertainties, (i.e. 1/
√
N) assuming 5 fb−1 of data

GA(%) GL(%) GR(%) W �(%) SM(%)
Selection cuts -26 -26 -28 -43 -24 (±1.2)
mtt̄ > 450 GeV -47 -47 -50 -62 -45 (±1.7)
|y(t) + y(t̄)| > 2 -45 -44 -49 -56 -45 (±3.2)

with order a few inverse femtobarn of data, and much
sooner in the case of the W �. Moreover, the GR model
becomes distinguishable from the others. Thus the dilep-
tonic charge asymmetry can establish the existence of a
BSM asymmetry in tt̄ events in typical axigluon or t-
channel vector boson models in the expected 7 TeV run.

To further strengthen the case for new physics and
distinguish between competing explanations of an asym-
metry, we consider several other leptonic variables. The
combination of these variables provides a diagnostic suite
of measurements which, taken together, can distinguish
between different models for the top AFB.

One useful variable is the asymmetry in the azimuthal
angle between the two leptons, ∆φ, which is π when the
two leptons are back to back and zero when they are
aligned in the transverse plane. In Eq. (9) we construct
an asymmetry with this variable

A��
∆φ =

N(cos∆φ�� > 0)−N(cos∆φ�� < 0)

N(cos∆φ�� > 0) +N(cos∆φ�� < 0)
. (9)

measuring how often the two leptons are on opposite sides
of the transverse plane (contributing to A��

∆φ < 0) vs.

how often they are on the same side (A��
∆φ > 0). Unlike

the leptonic asymmetry constructed in Eq. (8), there is
a kinematic reason for A��

∆φ to be biased to negative val-
ues. However, as one can see in Table VII, the difference
between the various A��

∆φ provides a useful discriminant.
In particular, it helps in distinguishing the signal of the
W � and GR models from the Standard Model.

C. Top Polarization

As one might expect, fully reconstructed observables
are even more powerful than those which use only the
leptons. Next we explore top polarization measurements,
which again require reconstruction of the top rest frame.
For simplicity we consider two choices of polarization
axis: (1) the beam axis, which we now define relative
to the boost of the tt̄ system,

n̂beam =

�
+ẑ if yt + yt̄ > 0

−ẑ if yt + yt̄ < 0
(10)

and (2) the helicity axis, again defined as the top di-
rection of motion in the tt̄ center of mass frame. The
asymmetry in cos θ� which measures the net polarization

TABLE VIII: Net polarization Pb in the beam basis at
a 7 TeV LHC, and in parenthesis the 1σ statistical
uncertainties, (i.e. 1/

√
N) assuming 5 fb−1 of data

GA(%) GL(%) GR(%) W �(%) SM(%)
Selection cuts 4 -1 5 9 2 (±1.2)
mtt̄ > 450 GeV 1 -4 4 11 0 (±1.7)
|y(t) + y(t̄)| > 2 2 -5 7 15 1 (±3.2)

TABLE IX: Net polarization Ph in the helicity basis at
a 7 TeV LHC, and in parenthesis the 1σ statistical
uncertainties, (i.e. 1/

√
N) assuming 5 fb−1 of data

GA(%) GL(%) GR(%) W �(%) SM(%)
Selection cuts 1 -1 4 18 1 (±1.2)
mtt̄ > 450 GeV 2 -2 6 26 0 (±1.7)
|y(t) + y(t̄)| > 2 0 -4 3 19 -2 (±3.2)

does not need to be redefined for the LHC, so we have
once again

Pn =
N(cos θ�,n > 0)−N(cos θ�,n < 0))

N(cos θ�,n > 0) +N(cos θ�,n < 0))
. (11)

Results are tabulated for the beam axis in Table VIII and
for the helicity axis in Table IX.

Polarization measurements are particularly useful for
distinguishing among the various axigluon models, which
differ from each other chiefly in the chiralities of their
couplings to top quarks. Polarization measurements also
are important for distinguishing the GL model from the
SM. The bias towards right-handed polarizations is an
effect of selection cuts preferentially passing the harder
leptons which arise from right-handed tops.

D. Top Spin Correlation

Finally, we present results on tt̄ spin correlations

A�
c1c2 =

N(c1c2 > 0)−N(c1c2 < 0))

N(c1c2 > 0) +N(c1c2 < 0))
(12)

where c1 = cos θ�1,n and c2 = cos θ�2,n. As with the pre-
vious section, we present results using two polarization
axes: the beam axis in Table X and the helicity axis in
Table XI.

As one can see from the tables, A�
c1c2 is not as sensi-

tive to new physics effects as the observables explored in
the previous subsections and thus will require more lumi-
nosity before yielding meaningful information. Nonethe-
less, as this observable probes independent information it
should still be measured as it can help to further narrow
down the set of explanatory models.
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differ from each other chiefly in the chiralities of their
couplings to top quarks. Polarization measurements also
are important for distinguishing the GL model from the
SM. The bias towards right-handed polarizations is an
effect of selection cuts preferentially passing the harder
leptons which arise from right-handed tops.

D. Top Spin Correlation

Finally, we present results on tt̄ spin correlations

A�
c1c2 =

N(c1c2 > 0)−N(c1c2 < 0))

N(c1c2 > 0) +N(c1c2 < 0))
(12)

where c1 = cos θ�1,n and c2 = cos θ�2,n. As with the pre-
vious section, we present results using two polarization
axes: the beam axis in Table X and the helicity axis in
Table XI.

As one can see from the tables, A�
c1c2 is not as sensi-

tive to new physics effects as the observables explored in
the previous subsections and thus will require more lumi-
nosity before yielding meaningful information. Nonethe-
less, as this observable probes independent information it
should still be measured as it can help to further narrow
down the set of explanatory models.
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1 Measurement of asymmetries1

A recent paper by Krohn, Liu, Shelton, and Wang [1] suggests two further observables that can
be studied. The first of these is the lepton charge asymmetry, which depends only on the two
measured leptons:

AlepC =
N(|ηl+ | > |ηl− |)− N(|ηl+ | < |ηl− |)
N(|ηl+ | > |ηl− |) + N(|ηl+ | < |ηl− |)

,

where |ηl | is the pseudorapidity of leptons. The second is the top forward-backward asymme-
try, defined as

AtopFB =
N(cos(θt) > 0)− N(cos(θt) < 0)
N(cos(θt) > 0) + N(cos(θt) < 0)

,

where θt is the production angle of the top quark in the tt rest frame with respect to the direction2

of the boost of the tt system.3

To further reduce the background fraction, the requirement is added that at least one of the4

selected jets must be consistent with coming from the decay of heavy flavor hadrons and be5

identified as a b jet by the CSVM b-tagging algorithm [2]. Some additional very minor selection6

changes are detailed in [3]. With such event selections, the simulation predicts that the selection7

is dominated by dileptonic tt events (92%), with the largest background coming from single top8

production [3].9

The AtopFB measurement requires the reconstruction of the tt system. The method described in10

Section ?? is again used, with minor differences detailed in [3]. Approximately 17% of events11

have no solution, and are not used in the measurement of AtopFB. The reconstructed asymme-12

tries are listed in Table 1, where they are also compared to the simulation.13

Table 1: Reconstructed and simulated asymmetries in the preselection region. Uncertainties
are statistical only.

Reconstructed asymmetries Data Simulation
AlepC 0.006 ± 0.010 0.002 ± 0.002
AtopFB 0.000 ± 0.011 0.005 ± 0.002

The reconstructed asymmetries are distorted from the true underlying distributions by the lim-14

ited acceptance of our detector and by bin-to-bin smearing due to the finite resolution of the15

measurement. We have developed a procedure that allows us to correct the binned data for16

both effects, yielding “parton-level” distributions and asymmetries. The unfolded results are17

normalized to the theoretical tt cross-section of 154.0 pb, so that the corrected distributions rep-18

resent the differential cross-section in the variable of interest. The details of the procedure are19

described in [3].20

Background-subtracted and unfolded asymmetry distributions are shown in Figure 1. The21

measured asymmetry values are summarized in Table 2 and compared to the SM tt parton level22

predictions obtained from POWHEG Monte Carlo [3]. No significant discrepancy is observed23

compared to the SM prediction. The systematic uncertainties are summarized in Table 3.24

1.1 Mtt dependence25

The dependence of AtopFB on the mass of the tt system, Mtt, is interesting because new physics26

is expected to be more prominent in the high Mtt region. The results are obtained by adding27
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TABLE VII: The azimuthal angle asymmetry A�

∆φ at a
7 TeV LHC, and in parenthesis the 1σ statistical

uncertainties, (i.e. 1/
√
N) assuming 5 fb−1 of data

GA(%) GL(%) GR(%) W �(%) SM(%)
Selection cuts -26 -26 -28 -43 -24 (±1.2)
mtt̄ > 450 GeV -47 -47 -50 -62 -45 (±1.7)
|y(t) + y(t̄)| > 2 -45 -44 -49 -56 -45 (±3.2)

with order a few inverse femtobarn of data, and much
sooner in the case of the W �. Moreover, the GR model
becomes distinguishable from the others. Thus the dilep-
tonic charge asymmetry can establish the existence of a
BSM asymmetry in tt̄ events in typical axigluon or t-
channel vector boson models in the expected 7 TeV run.

To further strengthen the case for new physics and
distinguish between competing explanations of an asym-
metry, we consider several other leptonic variables. The
combination of these variables provides a diagnostic suite
of measurements which, taken together, can distinguish
between different models for the top AFB.

One useful variable is the asymmetry in the azimuthal
angle between the two leptons, ∆φ, which is π when the
two leptons are back to back and zero when they are
aligned in the transverse plane. In Eq. (9) we construct
an asymmetry with this variable

A��
∆φ =

N(cos∆φ�� > 0)−N(cos∆φ�� < 0)

N(cos∆φ�� > 0) +N(cos∆φ�� < 0)
. (9)

measuring how often the two leptons are on opposite sides
of the transverse plane (contributing to A��

∆φ < 0) vs.

how often they are on the same side (A��
∆φ > 0). Unlike

the leptonic asymmetry constructed in Eq. (8), there is
a kinematic reason for A��

∆φ to be biased to negative val-
ues. However, as one can see in Table VII, the difference
between the various A��

∆φ provides a useful discriminant.
In particular, it helps in distinguishing the signal of the
W � and GR models from the Standard Model.

C. Top Polarization

As one might expect, fully reconstructed observables
are even more powerful than those which use only the
leptons. Next we explore top polarization measurements,
which again require reconstruction of the top rest frame.
For simplicity we consider two choices of polarization
axis: (1) the beam axis, which we now define relative
to the boost of the tt̄ system,

n̂beam =

�
+ẑ if yt + yt̄ > 0

−ẑ if yt + yt̄ < 0
(10)

and (2) the helicity axis, again defined as the top di-
rection of motion in the tt̄ center of mass frame. The
asymmetry in cos θ� which measures the net polarization

TABLE VIII: Net polarization Pb in the beam basis at
a 7 TeV LHC, and in parenthesis the 1σ statistical
uncertainties, (i.e. 1/

√
N) assuming 5 fb−1 of data

GA(%) GL(%) GR(%) W �(%) SM(%)
Selection cuts 4 -1 5 9 2 (±1.2)
mtt̄ > 450 GeV 1 -4 4 11 0 (±1.7)
|y(t) + y(t̄)| > 2 2 -5 7 15 1 (±3.2)

TABLE IX: Net polarization Ph in the helicity basis at
a 7 TeV LHC, and in parenthesis the 1σ statistical
uncertainties, (i.e. 1/

√
N) assuming 5 fb−1 of data

GA(%) GL(%) GR(%) W �(%) SM(%)
Selection cuts 1 -1 4 18 1 (±1.2)
mtt̄ > 450 GeV 2 -2 6 26 0 (±1.7)
|y(t) + y(t̄)| > 2 0 -4 3 19 -2 (±3.2)

does not need to be redefined for the LHC, so we have
once again

Pn =
N(cos θ�,n > 0)−N(cos θ�,n < 0))

N(cos θ�,n > 0) +N(cos θ�,n < 0))
. (11)

Results are tabulated for the beam axis in Table VIII and
for the helicity axis in Table IX.

Polarization measurements are particularly useful for
distinguishing among the various axigluon models, which
differ from each other chiefly in the chiralities of their
couplings to top quarks. Polarization measurements also
are important for distinguishing the GL model from the
SM. The bias towards right-handed polarizations is an
effect of selection cuts preferentially passing the harder
leptons which arise from right-handed tops.

D. Top Spin Correlation

Finally, we present results on tt̄ spin correlations

A�
c1c2 =

N(c1c2 > 0)−N(c1c2 < 0))

N(c1c2 > 0) +N(c1c2 < 0))
(12)

where c1 = cos θ�1,n and c2 = cos θ�2,n. As with the pre-
vious section, we present results using two polarization
axes: the beam axis in Table X and the helicity axis in
Table XI.

As one can see from the tables, A�
c1c2 is not as sensi-

tive to new physics effects as the observables explored in
the previous subsections and thus will require more lumi-
nosity before yielding meaningful information. Nonethe-
less, as this observable probes independent information it
should still be measured as it can help to further narrow
down the set of explanatory models.

+

-

Results (weighted vs unweighted powheg-pythia)

• Results show much smaller systematic shifts than powheg-tauola vs powheg pythia (slide 3)

• the largest shift is still seen in top polarisation, and again consistent results are seen between + and - leptons

• also tried simple reweighting (ignoring x dependence),  just 1 + (P Cosθ)/3 ,  and found similar results

• Am I missing some other difference between the two MCs?
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• If the only difference was in the tau decay, we would see compatible results between the two 
MCs when excluding events with taus from the unfolding matrices. Results below:

check for other differences between the two MC

powheg-pythia 
results (no taus)

powheg-tauola 
results (no taus) difference

d i f f e r e n c e 
attributable 
to tau decay

-0.112 -0.107 0.0043 -0.0006

-0.065 -0.059 0.0063 0.0042

-0.015 -0.003 0.0123 0.0025

-0.003 0.008 0.0111 -0.0042

0.010 0.011 0.0007 -0.0005

-0.010 -0.017 -0.0067 0.0004
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7 TeV LHC, and in parenthesis the 1σ statistical

uncertainties, (i.e. 1/
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Selection cuts -26 -26 -28 -43 -24 (±1.2)
mtt̄ > 450 GeV -47 -47 -50 -62 -45 (±1.7)
|y(t) + y(t̄)| > 2 -45 -44 -49 -56 -45 (±3.2)

with order a few inverse femtobarn of data, and much
sooner in the case of the W �. Moreover, the GR model
becomes distinguishable from the others. Thus the dilep-
tonic charge asymmetry can establish the existence of a
BSM asymmetry in tt̄ events in typical axigluon or t-
channel vector boson models in the expected 7 TeV run.

To further strengthen the case for new physics and
distinguish between competing explanations of an asym-
metry, we consider several other leptonic variables. The
combination of these variables provides a diagnostic suite
of measurements which, taken together, can distinguish
between different models for the top AFB.

One useful variable is the asymmetry in the azimuthal
angle between the two leptons, ∆φ, which is π when the
two leptons are back to back and zero when they are
aligned in the transverse plane. In Eq. (9) we construct
an asymmetry with this variable

A��
∆φ =

N(cos∆φ�� > 0)−N(cos∆φ�� < 0)

N(cos∆φ�� > 0) +N(cos∆φ�� < 0)
. (9)

measuring how often the two leptons are on opposite sides
of the transverse plane (contributing to A��

∆φ < 0) vs.

how often they are on the same side (A��
∆φ > 0). Unlike

the leptonic asymmetry constructed in Eq. (8), there is
a kinematic reason for A��

∆φ to be biased to negative val-
ues. However, as one can see in Table VII, the difference
between the various A��

∆φ provides a useful discriminant.
In particular, it helps in distinguishing the signal of the
W � and GR models from the Standard Model.

C. Top Polarization

As one might expect, fully reconstructed observables
are even more powerful than those which use only the
leptons. Next we explore top polarization measurements,
which again require reconstruction of the top rest frame.
For simplicity we consider two choices of polarization
axis: (1) the beam axis, which we now define relative
to the boost of the tt̄ system,

n̂beam =

�
+ẑ if yt + yt̄ > 0

−ẑ if yt + yt̄ < 0
(10)

and (2) the helicity axis, again defined as the top di-
rection of motion in the tt̄ center of mass frame. The
asymmetry in cos θ� which measures the net polarization

TABLE VIII: Net polarization Pb in the beam basis at
a 7 TeV LHC, and in parenthesis the 1σ statistical
uncertainties, (i.e. 1/

√
N) assuming 5 fb−1 of data

GA(%) GL(%) GR(%) W �(%) SM(%)
Selection cuts 4 -1 5 9 2 (±1.2)
mtt̄ > 450 GeV 1 -4 4 11 0 (±1.7)
|y(t) + y(t̄)| > 2 2 -5 7 15 1 (±3.2)

TABLE IX: Net polarization Ph in the helicity basis at
a 7 TeV LHC, and in parenthesis the 1σ statistical
uncertainties, (i.e. 1/

√
N) assuming 5 fb−1 of data

GA(%) GL(%) GR(%) W �(%) SM(%)
Selection cuts 1 -1 4 18 1 (±1.2)
mtt̄ > 450 GeV 2 -2 6 26 0 (±1.7)
|y(t) + y(t̄)| > 2 0 -4 3 19 -2 (±3.2)

does not need to be redefined for the LHC, so we have
once again

Pn =
N(cos θ�,n > 0)−N(cos θ�,n < 0))

N(cos θ�,n > 0) +N(cos θ�,n < 0))
. (11)

Results are tabulated for the beam axis in Table VIII and
for the helicity axis in Table IX.

Polarization measurements are particularly useful for
distinguishing among the various axigluon models, which
differ from each other chiefly in the chiralities of their
couplings to top quarks. Polarization measurements also
are important for distinguishing the GL model from the
SM. The bias towards right-handed polarizations is an
effect of selection cuts preferentially passing the harder
leptons which arise from right-handed tops.

D. Top Spin Correlation

Finally, we present results on tt̄ spin correlations

A�
c1c2 =

N(c1c2 > 0)−N(c1c2 < 0))

N(c1c2 > 0) +N(c1c2 < 0))
(12)

where c1 = cos θ�1,n and c2 = cos θ�2,n. As with the pre-
vious section, we present results using two polarization
axes: the beam axis in Table X and the helicity axis in
Table XI.

As one can see from the tables, A�
c1c2 is not as sensi-

tive to new physics effects as the observables explored in
the previous subsections and thus will require more lumi-
nosity before yielding meaningful information. Nonethe-
less, as this observable probes independent information it
should still be measured as it can help to further narrow
down the set of explanatory models.
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In particular, it helps in distinguishing the signal of the
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differ from each other chiefly in the chiralities of their
couplings to top quarks. Polarization measurements also
are important for distinguishing the GL model from the
SM. The bias towards right-handed polarizations is an
effect of selection cuts preferentially passing the harder
leptons which arise from right-handed tops.

D. Top Spin Correlation

Finally, we present results on tt̄ spin correlations

A�
c1c2 =

N(c1c2 > 0)−N(c1c2 < 0))

N(c1c2 > 0) +N(c1c2 < 0))
(12)

where c1 = cos θ�1,n and c2 = cos θ�2,n. As with the pre-
vious section, we present results using two polarization
axes: the beam axis in Table X and the helicity axis in
Table XI.

As one can see from the tables, A�
c1c2 is not as sensi-

tive to new physics effects as the observables explored in
the previous subsections and thus will require more lumi-
nosity before yielding meaningful information. Nonethe-
less, as this observable probes independent information it
should still be measured as it can help to further narrow
down the set of explanatory models.
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1 Measurement of asymmetries1

A recent paper by Krohn, Liu, Shelton, and Wang [1] suggests two further observables that can
be studied. The first of these is the lepton charge asymmetry, which depends only on the two
measured leptons:

AlepC =
N(|ηl+ | > |ηl− |)− N(|ηl+ | < |ηl− |)
N(|ηl+ | > |ηl− |) + N(|ηl+ | < |ηl− |)

,

where |ηl | is the pseudorapidity of leptons. The second is the top forward-backward asymme-
try, defined as

AtopFB =
N(cos(θt) > 0)− N(cos(θt) < 0)
N(cos(θt) > 0) + N(cos(θt) < 0)

,

where θt is the production angle of the top quark in the tt rest frame with respect to the direction2

of the boost of the tt system.3

To further reduce the background fraction, the requirement is added that at least one of the4

selected jets must be consistent with coming from the decay of heavy flavor hadrons and be5

identified as a b jet by the CSVM b-tagging algorithm [2]. Some additional very minor selection6

changes are detailed in [3]. With such event selections, the simulation predicts that the selection7

is dominated by dileptonic tt events (92%), with the largest background coming from single top8

production [3].9

The AtopFB measurement requires the reconstruction of the tt system. The method described in10

Section ?? is again used, with minor differences detailed in [3]. Approximately 17% of events11

have no solution, and are not used in the measurement of AtopFB. The reconstructed asymme-12

tries are listed in Table 1, where they are also compared to the simulation.13

Table 1: Reconstructed and simulated asymmetries in the preselection region. Uncertainties
are statistical only.

Reconstructed asymmetries Data Simulation
AlepC 0.006 ± 0.010 0.002 ± 0.002
AtopFB 0.000 ± 0.011 0.005 ± 0.002

The reconstructed asymmetries are distorted from the true underlying distributions by the lim-14

ited acceptance of our detector and by bin-to-bin smearing due to the finite resolution of the15

measurement. We have developed a procedure that allows us to correct the binned data for16

both effects, yielding “parton-level” distributions and asymmetries. The unfolded results are17

normalized to the theoretical tt cross-section of 154.0 pb, so that the corrected distributions rep-18

resent the differential cross-section in the variable of interest. The details of the procedure are19

described in [3].20

Background-subtracted and unfolded asymmetry distributions are shown in Figure 1. The21

measured asymmetry values are summarized in Table 2 and compared to the SM tt parton level22

predictions obtained from POWHEG Monte Carlo [3]. No significant discrepancy is observed23

compared to the SM prediction. The systematic uncertainties are summarized in Table 3.24

1.1 Mtt dependence25

The dependence of AtopFB on the mass of the tt system, Mtt, is interesting because new physics26

is expected to be more prominent in the high Mtt region. The results are obtained by adding27
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TABLE VII: The azimuthal angle asymmetry A�

∆φ at a
7 TeV LHC, and in parenthesis the 1σ statistical

uncertainties, (i.e. 1/
√
N) assuming 5 fb−1 of data

GA(%) GL(%) GR(%) W �(%) SM(%)
Selection cuts -26 -26 -28 -43 -24 (±1.2)
mtt̄ > 450 GeV -47 -47 -50 -62 -45 (±1.7)
|y(t) + y(t̄)| > 2 -45 -44 -49 -56 -45 (±3.2)

with order a few inverse femtobarn of data, and much
sooner in the case of the W �. Moreover, the GR model
becomes distinguishable from the others. Thus the dilep-
tonic charge asymmetry can establish the existence of a
BSM asymmetry in tt̄ events in typical axigluon or t-
channel vector boson models in the expected 7 TeV run.

To further strengthen the case for new physics and
distinguish between competing explanations of an asym-
metry, we consider several other leptonic variables. The
combination of these variables provides a diagnostic suite
of measurements which, taken together, can distinguish
between different models for the top AFB.

One useful variable is the asymmetry in the azimuthal
angle between the two leptons, ∆φ, which is π when the
two leptons are back to back and zero when they are
aligned in the transverse plane. In Eq. (9) we construct
an asymmetry with this variable

A��
∆φ =

N(cos∆φ�� > 0)−N(cos∆φ�� < 0)

N(cos∆φ�� > 0) +N(cos∆φ�� < 0)
. (9)

measuring how often the two leptons are on opposite sides
of the transverse plane (contributing to A��

∆φ < 0) vs.

how often they are on the same side (A��
∆φ > 0). Unlike

the leptonic asymmetry constructed in Eq. (8), there is
a kinematic reason for A��

∆φ to be biased to negative val-
ues. However, as one can see in Table VII, the difference
between the various A��

∆φ provides a useful discriminant.
In particular, it helps in distinguishing the signal of the
W � and GR models from the Standard Model.

C. Top Polarization

As one might expect, fully reconstructed observables
are even more powerful than those which use only the
leptons. Next we explore top polarization measurements,
which again require reconstruction of the top rest frame.
For simplicity we consider two choices of polarization
axis: (1) the beam axis, which we now define relative
to the boost of the tt̄ system,

n̂beam =

�
+ẑ if yt + yt̄ > 0

−ẑ if yt + yt̄ < 0
(10)

and (2) the helicity axis, again defined as the top di-
rection of motion in the tt̄ center of mass frame. The
asymmetry in cos θ� which measures the net polarization

TABLE VIII: Net polarization Pb in the beam basis at
a 7 TeV LHC, and in parenthesis the 1σ statistical
uncertainties, (i.e. 1/

√
N) assuming 5 fb−1 of data

GA(%) GL(%) GR(%) W �(%) SM(%)
Selection cuts 4 -1 5 9 2 (±1.2)
mtt̄ > 450 GeV 1 -4 4 11 0 (±1.7)
|y(t) + y(t̄)| > 2 2 -5 7 15 1 (±3.2)

TABLE IX: Net polarization Ph in the helicity basis at
a 7 TeV LHC, and in parenthesis the 1σ statistical
uncertainties, (i.e. 1/

√
N) assuming 5 fb−1 of data

GA(%) GL(%) GR(%) W �(%) SM(%)
Selection cuts 1 -1 4 18 1 (±1.2)
mtt̄ > 450 GeV 2 -2 6 26 0 (±1.7)
|y(t) + y(t̄)| > 2 0 -4 3 19 -2 (±3.2)

does not need to be redefined for the LHC, so we have
once again

Pn =
N(cos θ�,n > 0)−N(cos θ�,n < 0))

N(cos θ�,n > 0) +N(cos θ�,n < 0))
. (11)

Results are tabulated for the beam axis in Table VIII and
for the helicity axis in Table IX.

Polarization measurements are particularly useful for
distinguishing among the various axigluon models, which
differ from each other chiefly in the chiralities of their
couplings to top quarks. Polarization measurements also
are important for distinguishing the GL model from the
SM. The bias towards right-handed polarizations is an
effect of selection cuts preferentially passing the harder
leptons which arise from right-handed tops.

D. Top Spin Correlation

Finally, we present results on tt̄ spin correlations

A�
c1c2 =

N(c1c2 > 0)−N(c1c2 < 0))

N(c1c2 > 0) +N(c1c2 < 0))
(12)

where c1 = cos θ�1,n and c2 = cos θ�2,n. As with the pre-
vious section, we present results using two polarization
axes: the beam axis in Table X and the helicity axis in
Table XI.

As one can see from the tables, A�
c1c2 is not as sensi-

tive to new physics effects as the observables explored in
the previous subsections and thus will require more lumi-
nosity before yielding meaningful information. Nonethe-
less, as this observable probes independent information it
should still be measured as it can help to further narrow
down the set of explanatory models.

+

-

• Still a significant difference: most of the difference between the two MCs is independent of taus!

• Difference attributable to tau decays (final column) calculated by comparing “difference” column to 
slide 3. Results are compatible with results from reweighting powheg-pythia (slide 5).
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powheg pythia vs tauola, parton level, no cuts

• As expected, the two MCs are statistically consistent at parton-level when no cuts are made (using status 3 taus)

• There must be other differences besides taus in the decay, but nothing obvious in config files or in PREP:
• http://cmssw.cvs.cern.ch/cgi-bin/cmssw.cgi/CMSSW/Configuration/GenProduction/python/POWHEG_PYTHIA6_ttbar_lnublnub_7TeV_cff.py?hideattic=0&revision=1.6&view=markup

• http://cmssw.cvs.cern.ch/cgi-bin/cmssw.cgi/CMSSW/Configuration/GenProduction/python/POWHEG_PYTHIA6_top_tauola_cff.py?hideattic=0&revision=1.2&view=markup

• http://cms.cern.ch/iCMS/prep/requestmanagement?dsn=TTTo2L2Nu2B_7TeV-powheg-pythia6&campid=Summer11_R1

• http://cms.cern.ch/iCMS/prep/requestmanagement?dsn=TT_TuneZ2_7TeV-powheg-tauola&campid=Summer11_R1

powheg-pythia powheg-tauola difference

-0.119 -0.117 0.0011

0.003 0.004 0.0013

0.003 0.003 0.0001

-0.063 -0.062 0.0006

0.004 0.004 0.0002

0.005 0.005 0.0002

7
TABLE VII: The azimuthal angle asymmetry A�

∆φ at a
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N) assuming 5 fb−1 of data
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becomes distinguishable from the others. Thus the dilep-
tonic charge asymmetry can establish the existence of a
BSM asymmetry in tt̄ events in typical axigluon or t-
channel vector boson models in the expected 7 TeV run.

To further strengthen the case for new physics and
distinguish between competing explanations of an asym-
metry, we consider several other leptonic variables. The
combination of these variables provides a diagnostic suite
of measurements which, taken together, can distinguish
between different models for the top AFB.

One useful variable is the asymmetry in the azimuthal
angle between the two leptons, ∆φ, which is π when the
two leptons are back to back and zero when they are
aligned in the transverse plane. In Eq. (9) we construct
an asymmetry with this variable

A��
∆φ =

N(cos∆φ�� > 0)−N(cos∆φ�� < 0)

N(cos∆φ�� > 0) +N(cos∆φ�� < 0)
. (9)

measuring how often the two leptons are on opposite sides
of the transverse plane (contributing to A��

∆φ < 0) vs.

how often they are on the same side (A��
∆φ > 0). Unlike

the leptonic asymmetry constructed in Eq. (8), there is
a kinematic reason for A��

∆φ to be biased to negative val-
ues. However, as one can see in Table VII, the difference
between the various A��

∆φ provides a useful discriminant.
In particular, it helps in distinguishing the signal of the
W � and GR models from the Standard Model.

C. Top Polarization

As one might expect, fully reconstructed observables
are even more powerful than those which use only the
leptons. Next we explore top polarization measurements,
which again require reconstruction of the top rest frame.
For simplicity we consider two choices of polarization
axis: (1) the beam axis, which we now define relative
to the boost of the tt̄ system,

n̂beam =

�
+ẑ if yt + yt̄ > 0

−ẑ if yt + yt̄ < 0
(10)

and (2) the helicity axis, again defined as the top di-
rection of motion in the tt̄ center of mass frame. The
asymmetry in cos θ� which measures the net polarization

TABLE VIII: Net polarization Pb in the beam basis at
a 7 TeV LHC, and in parenthesis the 1σ statistical
uncertainties, (i.e. 1/

√
N) assuming 5 fb−1 of data

GA(%) GL(%) GR(%) W �(%) SM(%)
Selection cuts 4 -1 5 9 2 (±1.2)
mtt̄ > 450 GeV 1 -4 4 11 0 (±1.7)
|y(t) + y(t̄)| > 2 2 -5 7 15 1 (±3.2)

TABLE IX: Net polarization Ph in the helicity basis at
a 7 TeV LHC, and in parenthesis the 1σ statistical
uncertainties, (i.e. 1/

√
N) assuming 5 fb−1 of data

GA(%) GL(%) GR(%) W �(%) SM(%)
Selection cuts 1 -1 4 18 1 (±1.2)
mtt̄ > 450 GeV 2 -2 6 26 0 (±1.7)
|y(t) + y(t̄)| > 2 0 -4 3 19 -2 (±3.2)

does not need to be redefined for the LHC, so we have
once again

Pn =
N(cos θ�,n > 0)−N(cos θ�,n < 0))

N(cos θ�,n > 0) +N(cos θ�,n < 0))
. (11)

Results are tabulated for the beam axis in Table VIII and
for the helicity axis in Table IX.

Polarization measurements are particularly useful for
distinguishing among the various axigluon models, which
differ from each other chiefly in the chiralities of their
couplings to top quarks. Polarization measurements also
are important for distinguishing the GL model from the
SM. The bias towards right-handed polarizations is an
effect of selection cuts preferentially passing the harder
leptons which arise from right-handed tops.

D. Top Spin Correlation

Finally, we present results on tt̄ spin correlations

A�
c1c2 =

N(c1c2 > 0)−N(c1c2 < 0))

N(c1c2 > 0) +N(c1c2 < 0))
(12)

where c1 = cos θ�1,n and c2 = cos θ�2,n. As with the pre-
vious section, we present results using two polarization
axes: the beam axis in Table X and the helicity axis in
Table XI.

As one can see from the tables, A�
c1c2 is not as sensi-

tive to new physics effects as the observables explored in
the previous subsections and thus will require more lumi-
nosity before yielding meaningful information. Nonethe-
less, as this observable probes independent information it
should still be measured as it can help to further narrow
down the set of explanatory models.
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As one can see from the tables, A�
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tive to new physics effects as the observables explored in
the previous subsections and thus will require more lumi-
nosity before yielding meaningful information. Nonethe-
less, as this observable probes independent information it
should still be measured as it can help to further narrow
down the set of explanatory models.
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1 Measurement of asymmetries1

A recent paper by Krohn, Liu, Shelton, and Wang [1] suggests two further observables that can
be studied. The first of these is the lepton charge asymmetry, which depends only on the two
measured leptons:

AlepC =
N(|ηl+ | > |ηl− |)− N(|ηl+ | < |ηl− |)
N(|ηl+ | > |ηl− |) + N(|ηl+ | < |ηl− |)

,

where |ηl | is the pseudorapidity of leptons. The second is the top forward-backward asymme-
try, defined as

AtopFB =
N(cos(θt) > 0)− N(cos(θt) < 0)
N(cos(θt) > 0) + N(cos(θt) < 0)

,

where θt is the production angle of the top quark in the tt rest frame with respect to the direction2

of the boost of the tt system.3

To further reduce the background fraction, the requirement is added that at least one of the4

selected jets must be consistent with coming from the decay of heavy flavor hadrons and be5

identified as a b jet by the CSVM b-tagging algorithm [2]. Some additional very minor selection6

changes are detailed in [3]. With such event selections, the simulation predicts that the selection7

is dominated by dileptonic tt events (92%), with the largest background coming from single top8

production [3].9

The AtopFB measurement requires the reconstruction of the tt system. The method described in10

Section ?? is again used, with minor differences detailed in [3]. Approximately 17% of events11

have no solution, and are not used in the measurement of AtopFB. The reconstructed asymme-12

tries are listed in Table 1, where they are also compared to the simulation.13

Table 1: Reconstructed and simulated asymmetries in the preselection region. Uncertainties
are statistical only.

Reconstructed asymmetries Data Simulation
AlepC 0.006 ± 0.010 0.002 ± 0.002
AtopFB 0.000 ± 0.011 0.005 ± 0.002

The reconstructed asymmetries are distorted from the true underlying distributions by the lim-14

ited acceptance of our detector and by bin-to-bin smearing due to the finite resolution of the15

measurement. We have developed a procedure that allows us to correct the binned data for16

both effects, yielding “parton-level” distributions and asymmetries. The unfolded results are17

normalized to the theoretical tt cross-section of 154.0 pb, so that the corrected distributions rep-18

resent the differential cross-section in the variable of interest. The details of the procedure are19

described in [3].20

Background-subtracted and unfolded asymmetry distributions are shown in Figure 1. The21

measured asymmetry values are summarized in Table 2 and compared to the SM tt parton level22

predictions obtained from POWHEG Monte Carlo [3]. No significant discrepancy is observed23

compared to the SM prediction. The systematic uncertainties are summarized in Table 3.24

1.1 Mtt dependence25

The dependence of AtopFB on the mass of the tt system, Mtt, is interesting because new physics26

is expected to be more prominent in the high Mtt region. The results are obtained by adding27
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TABLE VII: The azimuthal angle asymmetry A�

∆φ at a
7 TeV LHC, and in parenthesis the 1σ statistical

uncertainties, (i.e. 1/
√
N) assuming 5 fb−1 of data

GA(%) GL(%) GR(%) W �(%) SM(%)
Selection cuts -26 -26 -28 -43 -24 (±1.2)
mtt̄ > 450 GeV -47 -47 -50 -62 -45 (±1.7)
|y(t) + y(t̄)| > 2 -45 -44 -49 -56 -45 (±3.2)

with order a few inverse femtobarn of data, and much
sooner in the case of the W �. Moreover, the GR model
becomes distinguishable from the others. Thus the dilep-
tonic charge asymmetry can establish the existence of a
BSM asymmetry in tt̄ events in typical axigluon or t-
channel vector boson models in the expected 7 TeV run.

To further strengthen the case for new physics and
distinguish between competing explanations of an asym-
metry, we consider several other leptonic variables. The
combination of these variables provides a diagnostic suite
of measurements which, taken together, can distinguish
between different models for the top AFB.

One useful variable is the asymmetry in the azimuthal
angle between the two leptons, ∆φ, which is π when the
two leptons are back to back and zero when they are
aligned in the transverse plane. In Eq. (9) we construct
an asymmetry with this variable

A��
∆φ =

N(cos∆φ�� > 0)−N(cos∆φ�� < 0)

N(cos∆φ�� > 0) +N(cos∆φ�� < 0)
. (9)

measuring how often the two leptons are on opposite sides
of the transverse plane (contributing to A��

∆φ < 0) vs.

how often they are on the same side (A��
∆φ > 0). Unlike

the leptonic asymmetry constructed in Eq. (8), there is
a kinematic reason for A��

∆φ to be biased to negative val-
ues. However, as one can see in Table VII, the difference
between the various A��

∆φ provides a useful discriminant.
In particular, it helps in distinguishing the signal of the
W � and GR models from the Standard Model.

C. Top Polarization

As one might expect, fully reconstructed observables
are even more powerful than those which use only the
leptons. Next we explore top polarization measurements,
which again require reconstruction of the top rest frame.
For simplicity we consider two choices of polarization
axis: (1) the beam axis, which we now define relative
to the boost of the tt̄ system,

n̂beam =

�
+ẑ if yt + yt̄ > 0

−ẑ if yt + yt̄ < 0
(10)

and (2) the helicity axis, again defined as the top di-
rection of motion in the tt̄ center of mass frame. The
asymmetry in cos θ� which measures the net polarization

TABLE VIII: Net polarization Pb in the beam basis at
a 7 TeV LHC, and in parenthesis the 1σ statistical
uncertainties, (i.e. 1/

√
N) assuming 5 fb−1 of data

GA(%) GL(%) GR(%) W �(%) SM(%)
Selection cuts 4 -1 5 9 2 (±1.2)
mtt̄ > 450 GeV 1 -4 4 11 0 (±1.7)
|y(t) + y(t̄)| > 2 2 -5 7 15 1 (±3.2)

TABLE IX: Net polarization Ph in the helicity basis at
a 7 TeV LHC, and in parenthesis the 1σ statistical
uncertainties, (i.e. 1/

√
N) assuming 5 fb−1 of data

GA(%) GL(%) GR(%) W �(%) SM(%)
Selection cuts 1 -1 4 18 1 (±1.2)
mtt̄ > 450 GeV 2 -2 6 26 0 (±1.7)
|y(t) + y(t̄)| > 2 0 -4 3 19 -2 (±3.2)

does not need to be redefined for the LHC, so we have
once again

Pn =
N(cos θ�,n > 0)−N(cos θ�,n < 0))

N(cos θ�,n > 0) +N(cos θ�,n < 0))
. (11)

Results are tabulated for the beam axis in Table VIII and
for the helicity axis in Table IX.

Polarization measurements are particularly useful for
distinguishing among the various axigluon models, which
differ from each other chiefly in the chiralities of their
couplings to top quarks. Polarization measurements also
are important for distinguishing the GL model from the
SM. The bias towards right-handed polarizations is an
effect of selection cuts preferentially passing the harder
leptons which arise from right-handed tops.

D. Top Spin Correlation

Finally, we present results on tt̄ spin correlations

A�
c1c2 =

N(c1c2 > 0)−N(c1c2 < 0))

N(c1c2 > 0) +N(c1c2 < 0))
(12)

where c1 = cos θ�1,n and c2 = cos θ�2,n. As with the pre-
vious section, we present results using two polarization
axes: the beam axis in Table X and the helicity axis in
Table XI.

As one can see from the tables, A�
c1c2 is not as sensi-

tive to new physics effects as the observables explored in
the previous subsections and thus will require more lumi-
nosity before yielding meaningful information. Nonethe-
less, as this observable probes independent information it
should still be measured as it can help to further narrow
down the set of explanatory models.
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Conclusions

• There is a significant systematic difference between the powheg-pythia 
and powheg-tauola samples for the polarisation measurement

• Only a small amount of the difference (~25%) is attributable to tau decay 
modeling

• what other difference between the two MCs could I be missing?

• The true systematic from tau decay modeling is small for all our variables

• May be OK to use MC@NLO for the paper?
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